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ABSTI_.ACT

Various wall-bounded flows with complex geometries

and free shear flows have been studied with a newly

developed realizable B.eynolds stress algebraic equation

model. The model development is based on the mvaxi-

ant theory in continuum mechanics. This theory en-

ables us to formulate a general constitutive relation for

the Reynolds stresses. Pope (1975) was the first to in-
troduce this kind of constitutive relation to turbulence

modeling. In our study, realizability is imposed on the

stitutive relation for the Reynolds stress tensor _ in

terms of the mean deformation rate tensor U_,j and the

tuzbu]ent velocity and length scales characterized by the

turbulent kinetic energy k and its dissipation rate _.

Pope (1975) applied this kind of constitutNe relation to

Rodi's algebraic Keyaolds stress formulation in conjunc-

tion with the LRR second order closure model (Laun-

der et al., 1975)and obtained an explicit algebraic ex-

pression for the Keynolds stresses for a two-dimensional

mean flow field. Tardbee (1992) was able to extend this

truncated constitutive relation to determine the coeffi- method to a general three-dimensional flow. We no-

cients so that, unlike the standard k-e eddy viscosity tice that in P_odi's algebraic Reynolds stress formula-
tion, some assumed concepts are in general not valid for

model, the present model will not produce negative nor-
real stresses in any situations of rapid distortion. The most turbulent shear flows, for example, the assumption

of constant _otropy of the Reynolds stresses and he-
calculations based on the present model have shown en-

cotuaging success m modeling complex turbulent flows, glect of turbulent transport of second moments. These
assumptions may b_g large errors to turbulence rood-

1. INTRODUCTION

The present study concentrates on complex turbu-

lent shear flows which are of great interest in propulsion

systems. These flows are backward-far_g step 1tows,

confined coflowingjets, confined swirling coaxial jets, U-

duct flows and _er flows. Most of these flows have

complex structures. For example, the confined coflow-

ing jet combines several types of flow structures, such as

the shear layer, jet, recirculation, separation and rest-

tachment. Accurate prediction of these flows is of great

importance for engine design in all its key dements. Tur-

bulent free shear flows (such as mixing layers, planar

and round jets) have been also studied for the purpose

of _g the performance of turbulence models in

different benchmark flows.

The turbulence model used in this study is a newly

developed realizable Reynolds stress algebraic equation
model which is fundamentally different from the tradi-

tional algebraic Reynolds stress models. The present

model is developed using the invariance theory in con-

tinuum mechanics. This theory leads to a general con-

cling. In addition, an inappxopziate second order closure

model would also add errors to this type of model. In

this study, Rodi's formulation was not used. We directly

impose realizability on the constitutive relation for the

Reynolds stresses to determine the coefficients in the

rdation. As a result, a readable explicit expression

for the lgeynotds stresses is obtained for general three-

dimensional turbulent flows. Some model constants are

fine-tuned against a backward-facing step flow and then

tested in other flows.

The calculations are performed with a conservative fi-

nite volume method (Zhu, 1991). Grid independent and

low numerical diffusion solutions are obtained by using

differencing schemes of second-order accuracy on su_-

ciently fLue grids. For wall-bounded flows, the standard

wall function approach (Launder and Spalding, 1974) is

used for wall boundary conditions. The results are com-

pared in detail with experimental data for both mean

and turbulent quanflties. Calcrlations using the stan-

dard k-e eddy viscosity model are also carried out for

the purpose of comparison. The compazi_n shows tha_



thepresentrealizableReynoldsstressalgebraic equation

model significantly improves the predictive capability of

k-e equation based models, expecially for flows involving

massive separations or strong shear layers. In these sit-

uations, the standard eddy viscosity model overpredicts

the eddy viscosity and, hence, fails to accurately pre-

dict wall shear stress, separation, recizculation, etc. We

find that the success of the present model in modeling

the above mentioned complex flows is largely due to its

effective eddy viscosity formulation which accounts for

the effect of mean shear rates. According to the present

model, the effective eddy viscosity will be significantly

reduced by the mean strain rate and m_tained at a

correct level to mimic the complex flow structures.

2. TURBULENCE MODEL

2.1 Constitutive Relation. Constitutiverelations

for the Reynolds stresseswere derived by severalre-

searchers(Pope, 1975,Yoshizawa, 1984 and Rubinstein

and Barton, 1990). Shih and Lumley (1993) used the

invarianttheory in continuum mechanics and the gen-

eralizedCayley-Hazniltonformulations(Rivlin,1955)to

derivea more (perhaps the most) generalconstitutive

relationforthe Reynolds stressesunder the assumption

that the Reynolds stressesare dependent only on the

mean velocitygradientsand the characteristicscalesof

turbulencecharacterizedby the turbulentkineticenergy

k and its dissipation rate s. This relation is

2 K 2 2
u_uj - -_kSij + 2a2_ (Ui,j + Uji -
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Eq.(1) contains 11 undetermined coefficients which are,

in general, scalar functions of various invariants of the

tensors in question, for example, SiiSi i (strain rate)

and f2ij_ii (rotation rate) which are (II 2 + IIx)/2 and

(ZI2 - IIx)/2 respectively. The detailed forms of these

scalar functions must be determined by other model con-

straints such as realizability, and by experimental data.

It is noticed that the standard k-¢ eddy viscosity

model corresponds to the first two terms on the right

hand side of Eq.(1). Both the two-scale direct interac-

tion approximation approach (Yoshizawa, 1984) and the

tZNG method (Rubinstein and Barton, 1990) also pro-

vided a relation which is the first five terms on the right

hand side of Eq.(1).

In tM_ study, for simplicity we truncate Eq.(1) to its

quadratic tensoriaI form which is of the same form as

those developed by Yos_awa (1984) and lZubinstein

and Barton (1990).

2.2 Realizability. Realizability (Schumann,1977,

Lnmley,1978), defined as the requirement of the non-

negativity of turbulent normal stresses and Schwarz' in-

equality between any fluctuating quantities, is a basic

physical and mathematical principle that the solution

of any turbulence model equation should obey. It also

represents a minimal requirement to prevent a turbu-

lence model from producing unphysical results. In the

following, this principle will be applied to the truncated

constitutive relation Eq.(1) to derive constraints on its
coefficients.

Let us first consider a two-dimensional pure mean de-
formation in which the deformation rate tensor contains

only non-zero diagonal components, i.e.,

" U_,./=O, if i#j

In this case, the normal stress ulul can be written as

u_u_ _ 1 k 1 k 2 )2
2k - -3 + 2a_-U1,1s + _ (2a4 + as + aT) _-_ (UI,_



C_I k 3 2
If we define a time scale ratio of the turbulent to the + (U_ _ U_j + Uj,_ U_,_ - _ II16_j)
mean strain rate as 7? - S k/c, where S -- V/2S._jS._¢, A2 + rf + _ c 2 '

C_2 k _ 1
the above equation can be wrRten as + A_ + _ + _ -_(U_.kUj,j, - _H2&j)

ulul 1 1 Cr3 k3 1
2k : + + ÷ + e. )nz + + + (3)

Physically, we know that utul will decrease due to the

stretcMng by Ut,1. However, by realizability ulul should Two quantities, the turbulent kinetic energy k and its

not be driven to negative values. Therefore, we require di._ipation rate c, remain to be determined in Eq.(3).

that To this end, we use the standard k-c model equations
_u---S which are

2k ,0, if 7?---'oo

"U,lU 1

( 2k ),_--*0, if _7---_oo

These physically necessary conditions are called the re- c,t + U_j - [(v + -_)¢ j]j - Ce_ __Uij - C_ k--
alizabi_ty conditions. Similar analysis of u2u_ and usu3

also leads to the above conditions. In addition, it should where
k _ 2/3

be mentioned that the above analysis also holds for the vt - C_-_-, C_ - Ax + _7
situation of a three-dimensional pure strain rate. These

conditions can be satisfied in several ways. Among them The coefficients Ce_, Cez, _K and ere assume their stan-

the simplest way is perhaps the following: dard values:

2/3 Ce_=1.44, C_=1.92, erK--1, ere =1.3
2a_ = -

At + r/ and the other coefficients are taken as
C_

2a_ =
A2 + rf + _ Crl = -4, Cr_ = 13, Cr_ = -2, A1 - 5.5, A_ - 1000.

C_
2a_ = A_ ÷ rf + _z These values are calibrated against the backward-facing

Crs step flow of Driver and See_er (1985) for which a

2a7 : A2 q- rf + _z complete set of experimental data is available for both
mean and turbulent quantities and they are also found

/2_* _* _/_ *where _ = _k/¢, ft - v.,,,,,q,_ij_ , f_ = (Ui,j - to be appropriate for other complex flows studied in this

U_,i)/2-+-4_m_i_m and _m represents the rotation of work.

the coordinate frame. A1,A:_, Cry, Cr_ and Crz will be

taken as constants and determined by comparing calcu- 3. APPLICATION S

lations with experiments.

It can be seen from the above analysis that realiz- 3.1 Diffuser Flows. Two conical diffuser flows

ability cannot be fully satisfied if the model coefficients were calculated, one with a 8,0 total angle (Trupp et

(a2-ar) axe taken as constant, such as those in the stan- al., 1986) and the other 10 ° (Fraser, 1958). In both

dard k-c model and some axfisotropic models, such as cases, the flows undergo strong adverse pressure g_adi-

the model of Speziale (1987). In fact, these models sat- ents but remain attached. Although the flow configura-

isfy realisability only in the weak sense, i.e., they only tion looks simple, it is not easy to calculate this type of

ensure the positi_ty of the sum of the normal Reynolds flow acc_ately, especially for the boundary layer quan-

stresses. For more detailed discussion about model co- tries. Fig.1 shows the variation of calculated and mea-

efficients see Shill et aL(1993), s_ed wall friction coefficient CI with the axial cUst_ee

. Z/Ro (Ro is the inlet duct radius). It is seen that the

2.3 Model Equations. The realizable Reynolds reset of the present model is in good agreement with

stress algebraic equation model can be written as the experimental data, w_e the standard k-e (SKE)

2 model overpredicts C! along _ost the entire length of

u.iu_ - -_k& 1 - v_(U_,.¢ + U_,_) the: diffuser. The calculated and measured displacement



thickness6" are compared in Fig.2. The comparison

shows that the SKE model gives a good prediction in

the upstream region, but deviates significantly from the

experiment downstream; the present model prediction is

good in the whole region. Fig.3 shows the comparison of

calculated and measured shape factor H. This is the case

in which the worst agreement with the measurement has

been found for both models. Nevertheless, the present

model still performs considerably better than does the

SKE model.

8.2 U-Duct Flow. This case is the experhnent

of Monson et al. (1990) conducted in a 180 ° planar

turnaround duct. It features flow with large streamline

curvature. Calculations are compared to the experiment

taken at a flow Reynolds number of 106. Fig.4 shows the

streamlines computed with the present model. A small

separation region is found at the bend exit. However,

the SKE model does not predict the flow separation.

Fig.5 shows the comparison of calculated and measured

C/ along the inner wall. The bend is located between

21.7__s/H<_24.8. Both models are seen to behave in

the same manner and produce large discrepancies in the

bend region. The reason for this may partially due to

the use of the wall function which does not respond to

the severe pressure gradient.

8.3 Backward-Facing Step Flows. Two back-

ward facing step flows, measured by Driver and Seeg-

The former (DS case) has a smaller and the latter (KKJ

case) a larger step expansion. The computed and mea-

sured reattachment points are compared in Table 1. The

calculated reattachment point from the present model

agrees well with the experiments. Fig.6 shows the com-

parison of the computed and the measured static pres-

sure coefficient Cp along the bottom wall. The SKE

model is seen to predict a premature pressure rise, which

is consistent with its underprediction of the reattacho

ment length, while the present model captures the pres-

sure rise quite well. Fig.7 shows the comparisons of pre-

dieted and measured turbulent stresses uu, vv and _-_ at

the location x=2 which is in the recirculation region. In

the KKJ-case, no reliable experimental data exist for the

turbulent stresses due to the unsteadiness of the flow.

ttowever, the experimental data of the DS-case is con-
sidered more reliable because of the smaller unsteadiness

of the flow. As compared with the results of the SKE

model in Fig.7, it is seen that the anisotropic terms in

the present model increase uu and decrease _-_, leading

to significant improvements in both _-_ and _ except in

the near-wall region. On the other hand, the anisotropic

terms have little impact on u--_. The improvement ob-

tained by the present model for _ is mainly due to the

reduction in C_, by strain rate.

Table 1. Comparison of the reattachment points

Case i measurement SKE PRESENT
DS t 6.1 4.99 5.82

KK3 7::t: 0.5 6.35 7.35

3.4 Confined Jets. The general features of con-

fined jets, the experiments of Barchilon and Curtet

(1964), are sketched in Fig.8. At the entrance, two

uniform flows, a jet of larger velocity andan ambient

stream of smaller velocity, are discharged into a cylin-

drical duct of diameter Do. The inlet flow conditions

can be characterized by the Craya-Curtet number Ct.

The experiment shows that recirculation occurs when

C_ <0.96. For a given geometry, recirculation as well as

adverse pressure gradients can be intensified by reduc-

Lug the value of Ct at the entrance. The separation and

reattachment points of the predicted recizculation bub-

bles are compared with the experimental data in Fig.9.

The experiment indicated that as Ct decreases, the sep-

aration point moves upstream while the reattachment

point remains practically unchanged. The present model

captures this feature well and predicts both the separa-

tion and reattachment points much better than does the

SKE model. The variation of the pressure coefficient Cp

along the duct wall is shown in Fig.10. The pressure dis-

tribution is governed by the jet entr_ment as well as

the contraction and expansion of the flow caused by the

recizculation bubble. The decrease in the ambient veloc-

ity induced by the entrainment gives rise to an adverse

pressure gradient, while the contraction of streamlines

produces the opposite effect. These two mechanisms in-

teract more intensely with each other as C_ decreases

and cause the pressure to vary little in the region up-
stream of the center of the recirculation bubble. How-

ever, in the downstream part of the recirculation bubble,

the deceleration of the flow sets up an adverse pressure

gradient, the slope of which becomes steeper as C_ de-

creases. Therefore, the ab_ty to capture the location

of the reci_culation center will have a direct impact on

the prediction of the pressure. Regarding the compari-

son between predictions and experiments, it is seen that



although both models predict practically the same to-

tal pressure rises which are in excellent agreement with

the measurements, the present model captures the steep

pressure gra_ents better than does the SKE model for

all of the Ct values.

3.5 Confined Swirling Coaxial Jets. Th_:_ is the

case experiment_y studied by Roback and Jonson

(1983). Fig.ll shows the gener_ features of the flow.

At the inlet, an _er jet and an annulax jet axe ejected

into an enlarged duct. Besides an ann_ax rec_culation

bubble due to sudden expansion of the duct, a centerline

rec_c_ation bubble is created by flow sw_g. Fig.12
compares the c_culation of the centerfine velocity _th

the experiment. The negative velocity indicates the cen-

tral recirculation. It is seen that both models pre_ct the

strength of central recircu]ation and the front stagnation

point quite well, but the present model pre_cts the rear

stagnation point much better than does the SKE model.

Fig.13 shows the comparison of calculated and measured

mean velocity pro_es at x=5.1cm. Both models give

reasonably good pro_es which axe within exper_ental

scatter, except for the peak values of the axial and radial

velocities. Both models have been found to give nearly

and free shear flows. The calculations have been com-

pared with available experimental data. The compar-

isons show that the present model provides significant

improvement over the standard k-_ eddy viscosity model

and that the present model is robust and economical as

well. This indicates that the present model has good

potential to be a practical tool in engineering applica-
tions.
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